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SUMMARY 

This paper derives the convection-diff usion-reaction equation governing the reaction between the 
dissolved oxygen in sea-water and the steel walls of a pulsating crack. By the neglect of the diffusion 
term it is shown that an exact solution of the convection-reaction equation can be obtained. A 
numerical method for the solution of the complete convection-diffusion-reaction equation is derived by 
the use of finite differences. The numerical computation of the initial transient and the final periodic 
steady-state values is also discussed. 
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INTRODUCTION 

One of the major problems affecting the structural integrity of offshore steel structures is 
corrosion fatigue which results from the interaction of corrosion and cyclic stressing. The rate 
of growth of corrosion fatigue cracks is strongly influenced by the solution composition in the 
crack. Experimental measurements of solution composition in the narrow cracks are awk- 
ward and consequently theoretical estimates have great potential value. An important factor 
in the corrosion process is the concentration of dissolved oxygen. Cathodic reduction within 
a corrosion fatigue crack leads to a depletion of oxygen in the crack resulting in a 
concentration gradient and mass transport by diffusion. An additional factor is the periodic 
variation in the displacement of the walls of the crack. As the crack opens the solution at a 
known concentration enters, and leaves again as the crack narrows. Thus convection is also a 
factor that must be considered. In summary the whole problem can be seen to be one 
involving reaction, diffusion and c o n ~ e c t i o n . ' * ~ ~ ~ ~ ~  

THE GOVERNING EQUATIONS 

We derive the governing equations from a consideration of the appropriate conservation 
laws. Let a scalar function, c, denote the concentration of the solute carried by the fluid 
flowing with velocity, u. Applying the conservation law to the solute, contained in a control 
volume, V, enclosed by a control surface, S, we obtain 

dt  I c d V = -  (J . n + q c )  d S  

where n is the outward unit normal to the control surface, J is the flux of the solute carried 
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Figure 1 .  One-dimensional crack representation, 

length L, width 2a and unit depth 

across the control surface by convection and diffusion and qc is the rate of removal of the 
solute by reaction at the control surface, q being constant. The flux, J, satisfies the equation 

J =  C U -  DVC 

where D is the diffusion coeficient, assumed to be constant. 
In this problem we assume that the crack can be represented by the diagram shown in 

Figure 1. As the crack width is significantly less than the crack length we assume further that 
the flows are one-dimensional and that edge effects can be ignored. 

For the control volume, ABCD, of unit depth, shown in Figure 1, conservation of mass 
gives - 

2 d t  J pa dx = - J 2 ax pa dx (3) 

where u = u(x, t )  is the fluid velocity, p is the fluid density and a = a( t )  is half the crack 
width. As the fluid is assumed to be incompressible this gives 

a 
a 

u = - - x  

Conservation of the solute in the control volume gives 

2 [ c a d x = - J ( a g + q c ) d x  d t  

(4) 

Here c = c(x, t) is the concentration, J =  J(x, t) is the flux and qc is the rate of transfer of the 
solute to the walls of the crack by cathodic reduction. The equation for the flux is now 

8 C  
J = u c - D -  

ax 

where D is the diffusion constant. 
Equations (4), ( 5 )  and (6) lead to a convection-diffusion-reaction equation in the form 

ac a2c ac 9 -= D y -  U ( X ,  t) c 
a t  ax ax a( t )  (7) 
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This equation is to be solved along with the boundary conditions 

c(L, t )  = CO 

ac 
- (0, t )  = 0 
ax 

and the initial condition 

c(x, 0) = C g ,  0 d x s L (9) 

The boundary condition at x = L refers to the mouth of the crack at which it is assumed that 
reservoir conditions hold. The boundary condition at x = 0 ensures that the flux along the 
x-axis is zero at this point, approximately true at a closed end. 

It is convenient to put these equations into non-dimensional form with the change of 
variable 

In terms of these new variables equation (7) takes the form 

with 
L 

U ( X ,  T) = - u(x, t )  D 

and 

The corresponding boundary and initial conditions are now 

m(1, T )  = 1 
am - (0, T )  = 0 ax 

m(X,O)=l ,  0 s X s l  

On the assumption that the crack width varies periodically, a convenient representation is 
to take 

a ( t )  = a,(l- e cos 27rft) 

a( T )  = a,( 1 - e cos 27rgT) 

(13) 

(14) 

where a,, e and f are constants. In terms of the non-dimensional variables we have 

with g = L2f/D. 
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THE CHARACTERISTIC SOLUTION OF THE 
CONVECTION-REACTION EQUATION 

In this section we derive a theoretical solution of equation (11) by ignoring the diffusion 
term. The neglect of the diffusion term may be justified on the grounds that, for typical 
parameters, the solution of the convection-reaction equation may be regarded as a first 
approximation to the solution of the convection-diffusion-reaction problem. 

We take the convection-reaction equation in the form 

am am -+ U ( X ,  T )  -+ Q(T)m = 0 
aT aX 

with 

a ( T ) = u , ( l - e c o s 2 ~ g T )  

plemented by the appropriate Cauchy data. For this example the Cauchy data take the form 
Equation (15) is a linear hyperbolic partial differential equation which must be sup- 

for n = 0 , 1 , 2  , . . .  . 

characteristics. The characteristic path satisfies 
It is possible to obtain an exact solution to this problem by using the method of 

a ( T )  d X  + u ( T ) X  d T = 0 

which may be integrated to give 

a ( T ) X =  a(To)Xo 

with (Xo,  To) the initial point of the characteristic path. 
On this characteristic path the compatibility condition 

a( T )  d m  + bm d T  = 0 

must hold, which may be integrated to give 

with 
dv 

F( T, To) = J 2TgT 
2mgTo ( l -  cos v)  

The expression for F(T,  To) may also be integrated to give 

2 (tan-' [(E) 1 + e tan(~gT)]--tan- '  [(lte)liltan(718T~)]} (19) 
(1 - 1 - e  F(T, To) = 
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Figure 2. Characteristic paths in the (X, T )  plane 

There are two types of solution dependent upon the initial point (X,,, To) from which the 
characteristics originate. These two cases divide the (X ,  T )  domain into two regions, 
illustrated in Figure 2. In region A, illustrated by the characteristic A,A2A,A4, the 
characteristics originate from the line T =  0, O G X <  1, and in region B, illustrated by the 
characteristics B,B, and B,B,, they originate from the line X =  1, T>O. 

An integration of equation (2) also yields 

showing that the path traced out by a fluid particle is identical to the characteristic path along 
which the concentration of the solution decreases. This is, of course, only to be expected as 
the diffusion is zero and the solute is entrained in the fluid. 

These two types of solution have fundamentally different properties. In the first type, fluid 
travelling along the A,A,A,A, characteristic gives up its solute to the crack walls so that 
eventually the concentration falls to zero. The solution in region A is therefore in the nature 
of a transient which steadily decreases to zero. In the second type, the concentration initially 
has its maximum value, M =  1, and decays along a characteristic path, such as BIB2 or B,B4, 
until the fluid leaves the crack. As the motion of the crack is periodic in nature, fluid will be 
periodically drawn in and expelled in this region. Further, as the flow is assumed to be one 
dimensional, the periodicity implies that there will only be the original fluid in the crack at 
the times T =  0, l /g,  2/g, . . . . 

It is also of interest to note that these two fundamentally different types of solution give 
rise to a discontinuity in the solute concentration across the characteristic separating region 
A from region B for all T >  l /g.  This discontinuity, propagated along the characteristic, is an 
interesting illustration of the nature of the discontinuities that can occur in the solution of 
linear, as distinct from non-linear, hyperbolic partial differential equations. 
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A FINITE-DIFFERENCE SOLUTION OF THE 
CONVECTION-DIFFUSION-REACTION EQUATION 

We consider here the solution of equation (11) subject to the conditions given in equations 
(12) and (14). The solution of this equation by finite differences is awkward because of the 
dominant nature of the convective term. A first attempt at the solution, with a standard 
central difference approximation to the convective term, had to be abandoned as the method 
produced negative values for the concentration which in no way corresponded to the reality 
of the physical situation.' One method of proceeding is to use a flux discretization scheme 
also described in Reference 1. The problem is overcome in this paper by using an upwind 
approximation to the convective term, with forward or backward differences dependent upon 
the direction of fluid flow. 

The failure of the standard central difference approximation has been shown to result from 
the dominance of the convective term and has been discussed by Siemieniuch and Gladwel14 
for explicit finite difference schemes. An analysis of the implicit method of solution used here 
has produced similar results. 

In our approximation of equation (11) a Crank-Nicolson type of method was used, the 
first step being to take the right-hand side as the mean of its values at the two time levels T 
and T+AT 

a m  1 a2m am 
- = - (2- U(X,  T )  -- Q(T) m) 

U ( X ,  T )  -- Q(T)m)  

aT 2 ax ax T = ( j + l ) k  

a m  
ax T = j k  

where k = A T  and j = 0 , 1 , 2  , . . .  . 
The time derivative is now approximated by a forward difference, the diffusion term by a 

central difference and the convective term by either a forward or backward difference 
depending upon the sign of U ( X ,  T) .  

For U(X,  T )  < 0, the convective term is approximated by a forward difference and we have 

Di , j=L(r - t  Ui,j)Mi+,,j+~rMi-l,j 1 
2 

k + 1-r+- ( 2h 

which holds for i = 0, 1, . . . , N -  1 with 

Mi,j = M(ih, j k )  = M ( X ,  T) ,  r = k /h2  
h = A X  and k=AT. 

From a consideration of the boundary conditions we can determine values for 
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M-,,J, 1 ,  M _  I,J, MN,J+,,  MT,, and so obtain a tri-diagonal system of N equations which can be 
solved for the unknowns 

For U ( X ,  T)>O, the convective term is approximated by a backward difference and we 
now have 

i = 0,1 , .  . . , N -  1. 

Ai,,+1Ml+l,j+l + Bc,j+1M,j+l+ G,,+,Mi-s,J+s =I Dt,j (23) 
with 

k 
A E , J + l  = -ir> ‘ I , J + ,  = -- 2 (“h ut,J+S)> 

( kJ) 

1 D . . = - Y M ~ + , , ~ + -  r + -  U . .  Mi-l,i 
2 
k ( 2 h ‘ ” 2  

b J  2 

J )  1.J 
+ 1 - r - - U . . - - Q .  M. .  

holding for i = 0,1, .  . . , N -  1. 

for the unknowns Mi,j+l, i = 0,1, . . . , N -  1, can be obtained. 
Once again, by considering the boundary conditions, a tri-diagonal system of N equations 

THE COMPUTATIONS 

Numerical solutions were obtained for both the characteristic and finite difference methods 
of solution. Typical parameter values for the problem were taken as L =  1 cm, a, = 
5.25 . cm2/sec. From 
these values the non-dimensional frequency of oscillation is obtained as g = 7142.9. 

Numerical solutions of the convection-diffusion-reaction equation, obtained with a mesh 
length AX=0.05 and a step length AT= 0.7.  are shown in Figure 3. With this value 

cm, e = 0.3, f =  0.1 Hz, D = 1.4. cm2/sec and q = 1.3 . 
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Figure 3. Numerical solutions of the convection-diffusion-reaction equation 
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for a time step there are 20 steps per cycle. The values of the concentration shown at 
DI0, D2,, D3,, . . . , are the values after 10,20,30, . . . , time steps respectively. These compu- 
tations show that the nature of the solution is similar to that of the convection-reaction 
equation in that both solutions have an initial transient which eventually decays to give a 
periodic steady-state solution. The accuracy of these computations was checked by reducing 
the mesh and step lengths, the results of which showed agreement, in general, to two places 
of decimals. 

Numerical solutions for the convection-reaction equation, using the characteristic method 
of solution, are shown in Figure 4 using a compatible notation. The path of the discontinuity, 
obtained by setting X ,  = 1, To = 0 in equation (17), is 

1 - e  
1 - e cos (27rgT) 

X =  

which, for the parameters used here, gives a maximum penetration of X =  0.5. 
Of great practical interest is the periodic steady-state solution after the initial transient has 

died away. In this problem the periodic steady-state is achieved to sufficient accuracy quite 
rapidly, after only 30 time steps, as shown by the computations in Figure 3. For a problem 
with different parameter values, however, the transient may take much longer to decay and 
will consequently require proportionately greater computing time. For the present problem it 
was found that time required to compute the periodic steady-state solution could be 
significantly reduced by the simple expedient of replacing the initial condition in equation 
(12) by 

m(X,O)=O, 0 G X G l  (25) 
This is of course the exact steady-state solution of the convection-reaction problem at the 
minimum crack width, and is consequently a first approximation to the steady-state solution 
of the convection-diffusion-reaction problem at the minimum crack width. Using this idea, 
with the parameters given here, our calculations showed that the periodic steady-state 
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solution could be obtained after 10 time steps instead of the 30 time steps required with the 
original boundary conditions. 

CONCLUSION 

From an assumption of one-dimensional flow this paper has derived the convection- 
diffusion-reaction equation governing the reaction between the dissolved oxygen in sea- 
water and the steel walls of a pulsating crack. 

By neglecting the diffusion term an exact solution, using the method of characteristics, has 
been obtained, and it has been shown that the solution space is divided into two regions 
separated by a discontinuity. In one of the regions the solution decays steadily to zero and in 
the other region the solution is of a periodic steady-state nature. 

A numerical method for the solution of the complete convection-diff usion-reaction 
equation has also been obtained by the use of finite-diff erence approximations. Solutions 
have been computed for typical parameter values, which show that the steady-state solution 
is periodic in nature after the initial transient has decayed. An alternative initial condition 
has also been used which has enabled the periodic steady-state solution to be calculated 
more efficiently. 

From the results in this paper it is possible to speculate on the mechanism of fracture for a 
steel structure vibrating in a salt-water solution. Once an initial crack has appeared, 
sea-water will enter and corrosion will commence. At the closed end of the crack there will 
be little corrosion because of the depletion in the dissolved oxygen. Further cyclic stressing 
will increase the length of the corrosion fatigue crack, more sea-water will be drawn in, and 
the corrosion process will continue. It would seem likely that these two mechanisms will 
operate in this sequential fashion until complete fracture occurs. 
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